
Spatial Domain Lossless Image Compression
Technique by Reducing Overhead Bits and Run

Length Coding
Mahmud Hasan , Kamruddin Md. Nur , Tanzeem Bin Noor , Hasib Bin Shakur

Department of Computer Science & Engineering, Stamford University Bangladesh
744, Satmoshjid Road, Dhanmondi, Dhaka, Bangladesh

Abstract— With the invention of Internet and communication
network, amount of data sharing and transmitting has been
increased. Because the bandwidth is always limited, whether the
Internet or a Local Area Network is taken into consideration,
transmission of large amount of digital data has ever been a
challenge. Digital Image or Multimedia Data, consisting of
relatively higher number of bytes as compared to other
documents, often falls in trouble while being used in networked
computing. Therefore, compression of digital image deserves
more importance than the simple documents do. Although, the
storage devices are offering huge capacity nowadays, bandwidth
of a network is not being increased in that proportion. Thus,
storing a digital image in a large capacity storage device may
consider compression less important, but transmission of a
digital image over a network must yet require the image in
compressed format. Again, for today’s heterogeneous network
structure; common, easy and less-time-consuming compression-
decompression (CODEC) technique is essential that is simple and
completely lossless. To meet all these demands, we modify a
spatial domain lossless image data compression method that uses
simple arithmetic operations in order to reduce the coding
redundancy of a digital image. After a careful exploration of the
focused lossless image compression method and finding out its
failure case, we also took its existing improvements into
consideration and revealed their limitations. Then, in this paper,
we present a modified approach for lossless image compression
in spatial domain addressing Run Length Encoding (RLE)
mechanism. The proper inquiry over the focused algorithm and
its improvement is carried out throughout this task and
application of RLE upon a certain bit-stream of the focused
improvement is performed so that more compression ratio is
achieved.

Keywords— Bits Per Pixel, Block Matrix, Block Processing,
Coding Redundancy, Computational Overhead, Psychovisual
Redundancy, Run Length Coding, Spatial Domain Lossless
Image Compression.

I. INTRODUCTION

Generally, the compression of a digital image takes place
into two different domains- spatial domain and frequency
domain, unlike the ordinary documents [1]. This is because
the frequency distribution of image data is different than that
of simple texts or documents and the amount of data in this
case is usually much higher [2, 3, 4, 5]. Compressing a digital
image in frequency domain is advantageous in the sense that it
can achieve better compression ratio as compared to its spatial
domain counter part [5]. However, as the concept of

ubiquitous computing is being spread out and networks are no
longer confined to a homogeneous environment, small
computing devices have been a significant part of network
computing. Because their processing power is less as
compared to the desktop/notebook computers and they are
continuously generating, sharing and transmitting thousands
of digital images every moment, the complex compression
algorithms of frequency domain is no good choice in general.
In such case, spatial domain image compression methods are
popular since they are computationally less complex.
Furthermore, we can divide the spatial domain image
compression algorithms into two categories- one preserves the
full visual quality of an image while compressing it and the
other intentionally losses some of its visual quality in order to
acquire more compression ratio. Hence, compression and
quality stands as a trade-off in this arena [2, 3, 4].
Nevertheless, various studies and researches have been carried
out regarding how an image data in spatial domain can be best
compressed apart from sacrificing the visual quality of the
image. The theories and inventions of the image compression
algorithms without affecting image quality comprise a
standard of image compression- lossless image compression
for both domains [2, 3, 4, 5, 6]. Another standard of image
compression considers the limitation of human eyes on
psychovisually redundant data and therefore losses small
image details beside achieving higher compression ratio. This
standard of image compression is known as lossy mode of
image compression in both spatial and frequency domain [1, 2,
5, 6]. The famous digital imaging format JPEG, frequently
used in today’s computing industry, is such a lossy mode of
image compression [7, 8].

Although, lossy compression standard is advantageous

when the quality is less significant; for satellite imaging and
diagnostic images from medical sector, lossless mode is
preferred because a little loss of visual information in such
digital imaging fields may lead to serious wrong decision.
Since all the smart computing devices and tablet computers
have now access to such imaging fields due to the
advancement in network topology, they require the noiseless
visual information in images, along with the simple
computational complexity of the algorithm [9]. Therefore, the
branch of spatial domain lossless image compression is
motivated.

Mahmud Hasan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3650-3654

3650

In this paper, we investigate a novel spatial domain lossless
image compression algorithm suggested by Syed & Mehdi [10]
and its improved extension as given by Hasan & Nur [9]. We
find out the cases for which the algorithm [10] suffers from
overhead bits and look for a way to further compress the
improved technique [9]. The rest of this paper is organized as
follows. Section II explores the background study of spatial
domain lossless and near-lossless image compression
algorithms while section III describes the focused algorithm
suggested by Syed & Mehdi. Section IV illustrates the
improvement suggested by Hasan & Nur [9]. After careful
explanation of all these necessary details, we extend the
previous approach proposed by Hasan & Nur [9] in section V.
Section VI summarizes the performance studies followed by
the conclusion in section VII.

II. BACKGROUND STUDY

The lossless image compression has been a significant issue
in recent years due to the increasing demand of storing huge
amount of high quality multimedia data in a given small
storage. This branch of image compression has achieved
numerous inventions during last few decades. Some of the
algorithms deal with an image in spatial domain [6, 9, 10, 11,
12, 13, 14, 15, 16, 17] while the others work in frequency
domain [7, 8, 18]. Simple data compression technique can also
be applied on the images as, after all, all digital images are
binary sequences [19]. A number of image compression
algorithms have been innovated that consider the fact that a
large area of a digital image contains same gray level value
and therefore finding the region property, a single gray value
can be stored instead of all [6, 20, 21, 22]. All of these
researches presented a compression technique that is
somehow better than their older counterparts [6]. However,
lossless image compression can be conducted in two different
domains as mentioned in section I.

In digital image compression world, overhead bits are

defined as the additional number of bits required to compress
an image [4, 9]. For maximum spatial domain image
compression techniques, getting overhead bits is quite
possible since every lossless strategy has to preserve some
non-image information to decode the compressed image in a
lossless manner. Since these strategies depend largely on
particular image content, whenever the non-image information
becomes larger than the original image information, an
overhead occurs [9]. This can be exemplified by the popular
Run Length Encoding technique. Run length encoding is a
binary data compression technique that takes into account how
many times (or run) a particular binary state is present in the
data. The run of the binary state is then preserved along with
the state. The run itself is not original data, but it is required to
finally achieve the compression. Hence, preserving non image
information in order to achieve compression is not a new
concept [9].

The algorithm we are going to investigate and modify

throughout the rest of the sections of this paper belongs to this

category of image compression mechanism. It makes use of an
extra block header in front of each 4×4 image block in order
to keep the information regarding the corresponding block and
uses less than 8 bits for coding each pixel of that block.
However, Hasan & Nur [9] discovered the cases for which the
focused algorithm proposed by Syed & Mehdi [10] suffers
from overhead bits. Hasan & Nur [9] also suggested an
improved approach for reducing the overhead bits of [10].
However, still the compression technique is not free from
overhead bits. Our study will survey the reasons in next of the
sections and propose a modified approach to this algorithm so
that the final number of bits is reduced significantly.

III. THE FOCUSED ALGORITHM

The algorithm proposed by Syed & Mehdi requires an
image to be divided into a number of non-overlapping m×n
blocks, where the standard value of m and n is 4 [9, 10].
However, the users have the freedom to choose any block size
depending on their particular application. After finding a
block, the algorithm simply looks for its maximum and
minimum gray levels - MAX and MIN. The key point of
reducing the coding redundancy of a block using the
technique is that, if MAX-MIN can be represented by k bits, Pi-
MIN must also be represented by k bits, where Pi is any pixel
of the block. Hence, the algorithm necessitates to subtract
MIN from MAX and every other pixel. This algorithm
preserves a block-header in front of each m×n block that
stores the MIN by 8 bits and a key k by 3 bits. Then all the
pixels of the block are encoded using k bits. The key k tells us
how many bits are required to represent each pixel of the
block. For example, if MAX-MIN can be represented by 4 bits,
k=4. Fig. 1 shows an example of how a block is compressed
using the focused algorithm. The embedding and extraction
procedure as given by Syed & Mehdi [10] is given in the
following subsections.

A. Encoding Steps of Focused Algorithm

Step1: Select m and n for whole image.
Step2: Take m×n non-overlapping block of image.
Step3: Find the difference of Min and Max value in selected

m×n block in X.
Step4: Add 11 bits header (8 bits for Min value of block, and 3

bits dedicated the no. of bits required to represent X
value’ in Y bits).

Step5: Subtract each pixel from Min value of a block and store
in separate Y bits of every pixel in new m×n
 block.

Fig. 1 Example Block Processing

Mahmud Hasan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3650-3654

3651

B. Decoding Steps of Focused Algorithm

Step1: Parse the header and find out block size m and n.
Step2: Find the Min (8 bit) value for each block.
Step3: Parse another 3 bits which represent the no. of (Y) bits

required for each pixel value.
Step4: Read next Y bits, add its value to Min and regenerate

the actual value of pixel. Repeat this step for all pixels
in a block.

Step5: Repeat the above steps for whole image and regenerate
the original image.

IV. OVERHEAD ANALYSIS AND IMPROVEMENT INVESTIGATION

It is clear from the discussion of section III that the focused
algorithm can essentially reduce the number of bits required to
present a pixel in spatial domain. Yet, the study of Hasan &
Nur [9] could prove that this algorithm suffers from a large
amount of overhead bits. Since the algorithm preserves 11-bit
header information in front of every m×n (or 4×4) block and
then encodes every block pixel using the number of bits
represented by k, it must result in 11 overhead bits for a block
whenever k=8. That is, when MAX-MIN results in an integer
to represent which at least 8 bits are required, then a typical
4×4 block has to be embedded using 11 (header) bits+16×8
(block-pixel) bits whereas the raw image could substantially
encode that block using only 16×8 bits. This circumstance
occurs whenever MAX-MIN ≥ 128 [9].

Fig. 2 shows an example where a practical overhead block

is presented. Hasan & Nur [9] showed that this phenomenon is
very frequent and statistically at least 5.76% 4×4 gray-scale
blocks for which this overhead occurs. For color images, the
percentage is 2.10. Whatever the percentage of overhead
blocks, undoubtedly, for such circumstances, the focused
algorithm needs to preserve 11 extra bits for each block.

The study of Hasan & Nur [9] attempted to find a way out
in order to solve the problem. They suggested a simple
approach where a 512×512 dimensional image should be
divided into a number of 4×4 non overlapping blocks. Then
the image should look like a 128×128 matrix where each entry
is a 4×4 block as shown in Fig. 3. Each row of this 128×128
matrix should now be perpended with a 128-bit header that is
initially reset. Whenever an overhead block is encountered in
the row, the corresponding bit in the 128-bit header is set and
the 11-bit block header is not considered for that block [9].
During decoding, the decoder simply looks for the set bits in

the 128-bit row header and don’t think over the 11-bits block
header. For the reset bits, the decoder considers that there is
an 11-bits block header. The improved encoding and decoding
steps as given by Hasan & Nur [9] are given in the following
subsections.

A. Encoding Steps

Step1: Prepend a 128 bit extra header in front of each block-

row, all bits are reset.
Step2: Take a m×n non-overlapping block of image as done in

focused algorithm (standard size of m and n is 4).
Step3: Find the difference of Min and Max value in selected

m×n block in X.
Step4: If Max-Min ≥ 128 i.e. overhead block, set the

corresponding bit in 128 bit header. Keep no 11 bit
block-header.

Step5: Subtract each pixel from Min value of a block and store
in separate Y bits of every pixel in new m×n block.in
separate Y bits of every pixel in new m×n
 block.

B. Decoding Steps

Step1: Read first 128 bits, find which are overhead blocks.
Step2: Except the overhead blocks, take 11 bits block-header

and follow the decoding steps described in section III-A.

Although the improved technique suggested by Hasan &
Nur [9] could reduce a good number of overhead bits from the
focused algorithm, they introduced 128 overhead bits in
essence for each row of 128×128 matrix. We investigated that,
there is a good possibility that many a time the 128-bit row
header suggested by Hasan & Nur [9] will contain all zeros
when no block of that row suffers from overhead. Our
statistical study in section VI shows that, in general, around
13.77% such rows of an image will contain no overhead
blocks and therefore the 128-bit row header will simple be
overhead bits.

Fig. 3 A 512×512 Image is Considered as 128×128 Matrix. Each

Element is a 4×4 Block

Fig. 2 Example of Overhead Block

Mahmud Hasan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3650-3654

3652

V. SUGGESTED FURTHER IMPROVEMENT

Since we cannot exclude the advances suggested by Hasan
& Nur [9] because of their effective way of reducing the
original overhead bits introduced by our focused algorithm,
we attempted to find out for how many cases their
improvement is useless and suffers from 128-bits overhead for
each row. We then incorporate the famous Run Length
Encoding technique to further compress those 128-bits

headers. Our idea simply takes each 128-bits row header of
the image encoded by the steps of section IV-A and then finds
the run of each binary state. Our resulting first bit denotes the
first binary state of the 128-bits row header, next 8 bits stand
for how many bits are required to represent each run. If these
8 bits indicate 4 in decimal, next each 4-bits group will
characterize a run. The following subsections introduce our
improved encoding and decoding procedures.

A. Improved Encoding Steps

Step1: Prepend a 128-bits extra header in front of each block-

row, all bits are reset.
Step2: Take a m×n non-overlapping block of image as done in

focused algorithm (standard size of m and n is 4).
Step3: Find the difference of Min and Max value in selected

m×n block in X.
Step4: If Max-Min ≥ 128 i.e. overhead block, set the

corresponding bit in 128-bits header. Keep no 11 bit
block-header.

Step5: Subtract each pixel from Min value of a block and store
in separate Y bits of every pixel in new m×n block.

Step6: Make run length coding on the 128-bits header. The first
bit represent the initial binary state of the header, next 8
bits give the number n decided by the maximum
possible bits required to represent each run, next each n
bits group denote a run.

B. Improved Decoding Steps

Step1: Read the first bit of the stored bit-stream.
Step2: Read next 8 bits and find n.
Step3: Find the runs each by decoding n-bits group.
Step4: Now follow the decoding procedure of section IV-B

VI. PERFORMANCE STUDIES

We studied 200 standard textbook images and 1000
randomly selected images for finding out how many times the
128-bits row header contains either all ones or all zeros.
13.77 % cases were come across for which the 128-bits row
header contain either all ones or all zeros. Irrespective of the
contents of the row headers, we applied Run Length Coding
on the row headers and therefore achieved 4.97% better
compression ratio on average for gray-scale images and
3.11% better compression ratio for color images. Table 1
shows the number of overhead bits reduced for some well-
known test images. Table 2 shows a comparative compression
ratio analysis for the same images. Table 3 shows a portion of
our statistical analysis to find out the cases where the 128-bits
row header will contain all zeros or all ones.

Again, in order to prove that the suggested improvement
losses no bit, we calculated its ∆PSNR as defined by equation
1. The ∆PSNR calculation is shown in table 4.

∆PSNR=PSNR(focused algorithm)-PSNR(proposed modification) (1)

TABLE I
OVERHEAD BIT REDUCTION BY PROPOSED IMPROVEMENT

Test Image Overhead Bits by
Focused Algorithm

Overhead Bits by
Improvement of Hasan &

Nur [9]

Overhead Bit Reduction by
Hasan & Nur [9]

Overhead Bit
Reduction by

Proposed
Improvement

Baboon 21186 16384 4802 3345
Lena 36509 16384 20125 16229
Cameraman 72578 16384 56194 49397
Iris 25060 16384 8676 8102

TABLE II
COMPARATIVE COMPRESSION RATIO ANALYSIS

Test Image Compression Ratio
by

Focused Algorithm

Compression Ratio
by

Hasan & Nur [9]

Compression Ratio
by

Proposed Improvement

Compression Ratio
Gained

Baboon 28.10 31.21 31.73 0.52
Lena 35.66 38.98 40.27 1.29
Cameraman 39.18 41.03 44.54 3.51
Iris 27.62 29.88 31.00 1.12

TABLE III
PORTION OF STUDY TO FIND ALL 1’S OR ALL 0’S IN 128-BITS ROW

HEADER

Test Image Number of All Zero/
All One Row Header

Baboon 21
Lena 38
Cameraman 16
Iris 52

Mahmud Hasan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3650-3654

3653

VII. CONCLUSIONS

In this paper, we investigated a novel spatial domain
lossless image compression method and its existing
improvement. The overhead introduced by the focused
algorithm is properly analyzed along with the careful
overhead studies of the existing improvement. We then
suggested a straight forward approach in order to further
compress this current stream of studies. The statistical
evidence shown in our study has proved that the proposed
modification is capable of achieving higher compression ratio
as compared to the focused algorithm and its improvement.
Moreover, our proposed improvement did not loss any bit
during the compression-decompression process.

REFERENCES

[1] K. Sayood, Introduction to Data Compression, 2nd ed. Moorgan

Kaufmann, 1991.

[2] R. Steinmetz, K. Nahrstedt, Multimedia: Computing, Communications

and Applications, 1st Ed., Pearson Education Inc, ISBN: 81-7808-319-1,

2005.
[3] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd Ed., Pearson

Prentice Hall, ISBN: 81-7758-168-6, 2005.
[4] T. Acharya, A.K. Ray, Digital Image Processing: Principles and Applications,

John Wiley & Sons Inc., ISBN: 10 0-471-71998-6, 2005.
[5] M. Nelson, J.L. Gailly, The Data Compression Book, 2nd ed. New York: M &

T Books, 1996.
[6] M. Hasan, K.M. Nur, A Lossless Image Compression Technique using

Location Based Approach, International Journal of Scientific and Technology
Research, Vol-1, Issue-2, 2012.

[7] G.K. Wallace, The JPEG Still Picture Compression Standard, IEEE Transactions

on Consumer Electronics, 1991.

[8] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data Compression

Standard, Van Nostrand Reinhold, 1993.

[9] M. Hasan and K.M. Nur, An Improved Approach for Spatial Domain

Lossless Image Data Compression Method by Reducing Overhead Bits”,

International Journal of Scientific and Engineering Research, vol. 3,

issue 4, 2012.

[10] S.A. Hassan and M. Hussain, Spatial Domain Lossless Image Data

Compression Method, International Conference of Information and

Communication Technologies, 2011.

[11] J.Y. Liang, C.Sheng Chen, C.H. Huang, and L. Liu, Lossless

Compression of Medical Images using Hilbert space-filling Curves,

Computerized Medical Imaging and Graphics-32, pp. 174-182, 2008.
[12] L. Zhang, B. Hu, Y. Li, and W. Yu, An Algorithm for Moving Multi-

target Prediction in a Celestial Background, Communications in
Computer and Information Science (CCIS) 61, pp 41-47, 2009.

[13] S.K. Pattanik, K.K. Mahapatra, and G. Panda, A Novel Lossless Image
Compression Algorithm using Arithmetic Modulo Operation, IEEE
International Conference on Cybernetics & Intelligence Systems (CIS)
and Robotics Automation & Mechatronics (RAM) (CIS-RAM 2006),
Thailand, pp. 234-238, 2006.

[14] K. Ramteke and S. Rawat, Lossless Image Compression LOCO-R
Algorithm for 16 bit Image, 2nd National Conference on Information
and Communication Technology (NCICT), pp. 11-14, 2011.

[15] M.S. Al-Wahaib and K. Wong, A Lossless Image Compression Algorithm
Using Duplication Run Length Coding, IEEE Conference on Network
Application Protocols and Services, pp. 245-250, 2010.

[16] C. Saravanan and R. Ponalagusamy, Lossless Grey-Scale Image Compression
Using Source Symbol Reduction and Huffman Coding, International Journal of
Image Processing, IJIP, vol-3, issue-5, pp. 246-251, 2009.

[17] O. Kubasova and P. Toivanen, Lossless Compression Methods for
Hyperspectral Images, International Conference on Pattern Reognition (ICPR),
2004.

[18] S.C. Huang, L.G. Chen, and H.C. Chang, A Novel Image Compression
Algorithm by Using LOG-EXP Transform, International Symposium on
Circuits and Systems, ISCAS(4), pp. 17-20, 1999, DOI: ISCAS.1999.779932.

[19] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data
Compression, IEEE Transaction on Information Theory (23-3), pp. 337-343,
1977.

[20] K. Belloulata, R. Stasinski, and J. Konrad, Region-based Image
Compression Using Fractals and Shape-adaptive DCT, International
Conference on Image Processing, pp. 815-819, 1999.

[21] K. Belloulata and J. Konrad, Fractal Image Compression with Region-
Based Functionality, IEEE Transaction on Image Processing, vol. 11,
no. 4, 2002.

[22] H. Hartenstein, M. Ruhl, and D. Saupe, Region-Based Fractal Image
Compression, IEEE Transaction on Image Processing, vol. 9, no. 7,
2000.

TABLE IV
∆PSNR CALCULATION

Test Image ∆PSNR
Baboon 0.00
Lena 0.00
Cameraman 0.00
Iris 0.00

Mahmud Hasan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3650-3654

3654

